มาทำความรู้จัก ระบบแนะนำ (Recommendation system) ว่าคืออะไรกัน


Share this article

ในปัจจุบัน ชีวิตประจำวันของเรามีการซื้อขายและใช้บริการต่าง ๆ จากเว็บไซต์หรือระบบออนไลน์มากมาย เราจะพบว่า สิ่งที่มาคู่กับขณะเลือกซื้อสินค้าหรือใช้บริการคือการแนะนำสินค้าหรือบริการอื่นที่เกี่ยวข้องโดยระบบแนะนำ อาจจะเป็นการแนะนำให้อ่านหนังสือบางเล่มหรือซื้อของบางอย่าง  รวมถึงแนะนำให้ดูหนังบางเรื่องหรือฟังเพลงบางเพลง  ยกตัวอย่างเช่น ขณะที่เราดูคลิปวิดีโอออนไลน์เกี่ยวกับวิธีทำขนมจบ เราจะเห็นว่าทางเว็บไซต์จะมีการแนะนำวิดีโอคลิปที่เกี่ยวข้องกับการทำขนมชนิดอื่นๆ ที่คล้ายกับสิ่งที่เราดูจบไปหรือคลิปรีวิวร้านขายขนมให้กับเราในทันที

 

 

อีกตัวอย่างหนึ่งนั่นก็คือการซื้อหนังสือผ่านเว็บไซต์ชื่อดังอย่าง Amazon เมื่อผู้ซื้อซื้อหนังสือชื่อ SICP ซึ่งเป็นหนังสือเกี่ยวกับวิทยาการคอมพิวเตอร์ (Computer science) ทางเว็บไซต์จึงมีการแนะนำหนังสือเกี่ยวกับการการเขียนโปรแกรมเชิงฟังก์ชัน (Functional programming) ซึ่งเป็นประเภทของหนังสือที่คนมักจะซื้อด้วยกันให้กับผู้ซื้อนั่นเอง

 

 

ทีนี้เรามาดูกันว่าภายใต้การแนะนำสิ่งของเหล่านี้ให้กับผู้ซื้อจะมีการทำงานในแบบต่างๆ อย่างไรบ้าง ระบบแนะนำสามารถทำงานโดยใช้ 2 วิธีหลักๆ ได้แก่ การวิเคราะห์ข้อมูลของเนื้อหา (Content-based Filtering) และ การวิเคราะห์จากการอ้างอิงถึงพฤติกรรมของผู้ใช้ (Collaborative Filtering)

 

Content-based Filtering

Content-based Filtering จะดูที่ลักษณะของสินค้าที่จะแนะนำ และแนะนำสิ่งที่มีลักษณะหรือมีคำอธิบายคล้ายกับโปรไฟล์ของผู้ใช้ รวมถึงลักษณะของสิ่งที่ผู้ใช้เคยใช้หรือเคยชอบ เช่น ระบบจะแนะนำหนังที่เนื้อหาของหนังมีความคล้ายกับหนังที่ผู้ใช้เคยดูมาก่อนหน้านี้ ดังนั้นการใช้ Content-based Filtering จะต้องมีข้อมูลคุณลักษณะของสินค้า เช่น กลุ่ม/ประเภท ขนาด ราคา สี สไตล์ ฟังก์ชั่น ตำแหน่งแบรนด์ดิ้ง หรือคำอธิบายตัวสินค้าแบบย่อ เป็นต้น

 

ข้อดีของ content-based filtering คือ

  • เนื่องจากระบบแนะนำดูโปรไฟล์ของผู้ใช้แต่ละคนแยกออกจากกัน สินค้าที่แนะนำจะค่อนข้างตรงกับรสนิยมของผู้ใช้ที่มีรสนิยมแตกต่างจากคนส่วนใหญ่
  • การแนะนำสินค้าใหม่ที่ยังไม่ค่อยมีผู้ใช้งานจะทำได้ง่ายเพราะสามารถพิจารณาจากความคล้ายคลึงของคุณลักษณะกับสินค้าเดิม

 

ความยากของการทำระบบแนะนำแบบ Content-based Filtering คือ การเตรียมแคตาล็อคข้อมูลสินค้าซึ่งใช้เวลามาก และการสร้าง feature ที่เหมาะสมเพื่ออธิบายตัวสินค้าและโปรไฟล์ของผู้ใช้ซึ่งขึ้นอยู่กับแนวของสินค้า นอกจากนั้น Content-based  Filtering จะไม่สามารถแนะนำสินค้าที่แตกต่างจากสินค้าที่ผู้ใช้เคยซื้อมากนัก ทำให้ผู้ใช้ได้รับการแนะสินค้าที่มีความหลากหลายค่อนข้างน้อย

 

Collaborative Filtering

Collaborative Filtering (CF) อาศัยหลักการ The Wisdom of the Clouds ซึ่งข้อมูลที่ต้องมีคือ rating ของสินค้าหรือบริการของผู้ใช้แต่ละคนที่ผ่านมา เราจะแบ่งประเภทการ rating เป็นสองแบบนั้นก็คือ การให้คะแนนที่ชัดเจน (Explicit rating) เช่น การกดดาวให้ 5 ดาวสำหรับหนังเรื่องหนึ่ง กับอีกแบบหนึ่งคือ การให้คะแนนโดยนัย (Implicit rating) เช่น การเช็คคะแนนโดยวัดจากจำนวนการซื้อ หรือการกดเพื่อเข้าไปดูวิดีโอนั่นเอง

 

ข้อมูล rating จะถูกนำมาใช้ในการแนะนำสินค้าได้สองแบบ แบบที่หนึ่งคือ ดูจากความชอบของลูกค้าที่คล้ายกับเรา หรือที่เรียกว่า User-based CF  โดยถ้าผู้ใช้ที่ถูกจัดให้อยู่ในกลุ่มเดียวกันมักจะชอบสินค้าที่มีลักษณะคล้ายกัน ตัวอย่างที่ทำให้เข้าใจได้ง่าย เช่น ผู้ชายสองคนที่กินอาหารเหมือนกัน เมื่อนาย B ซื้อน้ำอัดลม ก็จะมีความน่าจะเป็นที่นาย A จะซื้อเช่นกัน ทำให้ในการสั่งอาหารจะมีการแนะนำน้ำอัดลมให้นาย A

 

แบบที่สองคือ ดูจากสินค้าที่คล้ายกับสินค้าที่เราเคยใช้ในแง่ของ rating จากผู้ใช้คนอื่น หรือที่เรียกว่า Item-based CF เช่น ถ้ามีหนังซี่งเราไม่เคยดูในระบบได้รับ Rating จากผู้ใช้คนอื่นๆในรูปแบบที่คล้ายกับหนังที่เราเคยดูและให้ rating สูง ระบบก็จะแนะนำหนังเรื่องนั้นให้กับเรา เป็นต้น

 

ข้อดีของ Collaborative filtering คือสามารถประยุกต์ใช้ได้กับทุกประเภทของสินค้าและไม่ต้องมีการทำแคตาล็อคเพื่ออธิบายสินค้า  แต่จะมีข้อจำกัดเมื่อข้อมูล rating มีน้อยหรือสินค้าใหม่ๆที่ยังไม่ค่อยมีการให้ rating จะแนะนำได้ยาก

 

READ  Big Data ฮีโร่ผู้อยู่เบื้องหลังในจักรวาล Marvel

ลงทะเบียนรับข่าวสาร

ไม่พลาดทุกการอัพเดทจาก Big Data Experience Center

Big Data Experience Center (BX)

ชั้น 14 อาคาร Knowledge Exchange Center (KX)
110/1 ถนนกรุงธนบุรี, แขวงบางลำภูล่าง เขตคลองสาน กรุงเทพฯ 10600
อีเมล์: [email protected]